POISSON APPROXIMATION FOR RANDOM SUMS OF INDEPENDENT NEGATIVE BINOMIAL RANDOM VARIABLES
نویسندگان
چکیده
منابع مشابه
Strong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملOn the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملOn bounds in Poisson approximation for distributions of independent negative-binomial distributed random variables.
Using the Stein-Chen method some upper bounds in Poisson approximation for distributions of row-wise triangular arrays of independent negative-binomial distributed random variables are established in this note.
متن کاملPoisson Approximation for Sums of Dependent Bernoulli Random Variables
In this paper, we use the Stein-Chen method to determine a non-uniform bound for approximating the distribution of sums of dependent Bernoulli random variables by Poisson distribution. We give two formulas of non-uniform bounds and their applications.
متن کاملstrong laws for weighted sums of negative dependent random variables
in this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. the results on i.i.d case of soo hak sung [9] are generalized and extended.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2014
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v93i6.3